A Parallel Best-Response Algorithm with Exact Line Search for Nonconvex Sparsity-Regularized Rank Minimization

نویسندگان

  • Yang Yang
  • Marius Pesavento
چکیده

In this paper, we propose a convergent parallel best-response algorithm with the exact line search for the nondifferentiable nonconvex sparsity-regularized rank minimization problem. On the one hand, it exhibits a faster convergence than subgradient algorithms and block coordinate descent algorithms. On the other hand, its convergence to a stationary point is guaranteed, while ADMM algorithms only converge for convex problems. Furthermore, the exact line search procedure in the proposed algorithm is performed efficiently in closed-form to avoid the meticulous choice of stepsizes, which is however a common bottleneck in subgradient algorithms and successive convex approximation algorithms. Finally, the proposed algorithm is numerically tested.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the convergence of nonconvex line search

In this note, we consider the line search for a class of abstract nonconvex algorithm which have been deeply studied in the Kurdyka-Łojasiewicz theory. We provide a weak convergence result of the line search in general. When the objective function satisfies the Kurdyka-Łojasiewicz property and some certain assumption, a global convergence result can be derived. An application is presented for t...

متن کامل

Sparse Reduced Rank Regression With Nonconvex Regularization

In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing ...

متن کامل

The Trimmed Lasso: Sparsity and Robustness

Nonconvex penalty methods for sparse modeling in linear regression have been a topic of fervent interest in recent years. Herein, we study a family of nonconvex penalty functions that we call the trimmed Lasso and that offers exact control over the desired level of sparsity of estimators. We analyze its structural properties and in doing so show the following: 1. Drawing parallels between robus...

متن کامل

Katyusha X: Practical Momentum Method for Stochastic Sum-of-Nonconvex Optimization

The problem of minimizing sum-of-nonconvex functions (i.e., convex functions that are average of non-convex ones) is becoming increasingly important in machine learning, and is the core machinery for PCA, SVD, regularized Newton’s method, accelerated non-convex optimization, and more. We show how to provably obtain an accelerated stochastic algorithm for minimizing sumof-nonconvex functions, by...

متن کامل

A Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect

Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1711.04489  شماره 

صفحات  -

تاریخ انتشار 2017